博士龙
+ 关注 已关注 相互关注
10月10日 2018

谈谈食用胶

很多棉花糖、果汁软糖、晶花软糖、橡皮糖等软糖,都是用明胶作为食用胶; 很多QQ糖、棉花糖、软糖、牛皮糖、山楂糕等,都是用魔芋胶作为食用胶; 很多棉花糖、果冻、布丁等,都是用琼脂作为食用胶; 目前市场上的珍珠奶茶的珍珠,基本上是由食用胶做的;而台湾原产的奶茶珍珠成分,却是地瓜粉。 那么,食用胶到底好不好?有没有危害?

食用胶(hydrocolloid)也称亲水胶体、水溶胶,是能溶解或分散于水中,并在一定条件下,其分子中的亲水基团,如羧基、羟基、氨基和羧酸根等,能与水分子发生水化作用形成黏稠、滑腻的溶液或凝胶。在食品加工中起到增稠、增黏、黏附力、凝胶形成力、硬度、脆性、紧密度、稳定乳化、悬浊体等作用,使食品获得所需要各种形状和硬、软、脆、黏、稠等各种口感,故也常称作食品增稠剂、增黏剂、胶凝剂、稳定剂、悬浮剂、胶质等 。

食用胶体以其安全、元素、理化性质独特等优良特性,深受人们的关注,特别是食品学家。它的用途广泛,可应用于冷食品、饮料、乳制品、调味品、糕点、淀粉、糖果、酿酒、食品保鲜与冷藏等食品行业,还可用于化妆品、涂料、光敏树脂、肥料、铸造、烟草以及制药等行业。

世界上允许使用的食用胶品种约有60余种,中国允许使用的约有40种,国内肉类产品生产使用最广泛的食用胶主要有卡拉胶、黄原胶、瓜尔豆胶、琼脂、明胶、海藻酸钠、刺槐豆胶和魔芋胶等。

常用的食用胶一般都是"天然产物"。比如琼脂和卡拉胶,是海藻的提取物。明胶,是从动物的皮或者骨头水解熬制而来。而阿胶只不过是在选材和工艺上有所不同,跟明胶并没有本质差异。食用胶中比较"高级"的果胶,主要来源是桔子皮和苹果榨汁后的残渣。还有一些食用胶是来自于植物的种子,比如阿拉伯胶、瓜尔豆胶、槐豆胶,都是从相应植物的种子中提取而来的。还有一些水胶体由微生物发酵得到,比如黄原胶。

食品胶主要成分是多糖类或蛋白质的大分子物质。多糖类食品胶,基本组成是单糖及其衍生物,化学结构是以单糖为单位形成的大分子多糖,因单糖种类、聚合度、糖单元之间的键连及排列方式、糖单元上羟基取代情况等各异,产生不同功能特性,主要体现在溶解性、黏度、流体特性、胶溶液对酸碱及温度的稳定性,成胶冻能力及凝胶强度、胶溶液对其他电解质的兼容性、假塑性及各种多糖之间协同互补等方面。蛋白质类食品胶,一般由氨基酸构成,因种类、数量与空间结构排列直接影响与制约着其功能特性。

另外,一些较新型的食品胶如亚麻籽胶、凝结多糖、普鲁兰糖、结冷胶、海藻酸丙二醇酯等已在食品工业中开始应用,且应用范围日趋广泛。

功能特性

凝胶作用 食品胶凝胶的作用,是亲水胶体在氢键、电场极化力或溶液中的某些高价离子的键桥作用下,其长链分子相互交联而形成并将液体缠绕固定在内的三维连续式网络,获得坚固严密的结构以抵制外界压力而最终阻止体系的流动 。三维网络的缠绕度、分子交联的数量和属性、形成网络各单元的相互吸引和排斥以及与不同溶剂作用的差异等形成了各种食品胶的不同胶凝特性。某些食品胶单独存在时不具胶凝性,但与其它胶复配却呈现出增稠和凝胶协同效应 。 增稠作用 食品胶因其分子发生水化作用,而具有增稠作用。不同种类食品胶因其自身结构产生不同增稠和流变特性,同一种食品胶,相对分子质量越大,相同质量浓度的体系黏度就越大。食品胶黏度随其浓度增大出现不同程度增加,呈现一定正相关性,但与体系温度呈负相关,一般温度升高,黏度下降;温度下降,黏度上升。食品胶溶液受体系电解质、pH、压力的影响呈现出明显不同的变化规律,主要与食品胶分子本身结构差异有关。 乳化稳定作用 食品胶添加到食品中后,其体系黏度增加,体系中分散相不容易聚集和凝聚,而使分散体系稳定,可作为果汁饮料、啤酒泡沫、糕点裱花等的乳化稳定剂,但并不是真正的乳化剂或起泡剂,其作用方式不是按照一般乳化剂的亲水-亲油平衡机制来进行,而是通过增稠或增加水相黏度以阻止或减弱分散的油粒小球发生迁移和聚合倾向方式完成的。

悬浮分散作用 食品胶大多数具有表面活性,可吸附于分散相的表面,使其具有一定的亲水性而易于在水体系中分散。食品胶加入食品体系中可增加黏度,根据斯托克斯定律,液相黏度越大,颗粒沉降速度就越慢,可延迟固体颗粒的沉淀作用。 膳食纤维功能 绝大数食品胶应用于食品中还能发挥膳食纤维的功能保健作用。国内外对多糖类食用胶作为膳食纤维生理作用的研究报道 较多,如瓜尔豆胶、果胶、魔芋胶、壳聚糖和黄原胶等,它们作为膳食纤维都有着显著的生理功效。食品胶作为脂肪取代物较广泛地应用于低脂食品、疗效食品和保健食品的生产中。脂肪取代物大部分是以食品胶为主要原料或以食品胶体为关键成分。 结晶控制作用 食品中许多重要性质如形状、光亮度、咀嚼性和融化性等都与晶体结构直接相关。食品胶对结晶作用有3种方式:①相容性:与晶体结合,且依附在增长的晶体表面,改变晶体正常的增长方式;②竞争性:与晶体相互竞争形成结晶;③结合性:与其它物质结合,进而影响晶体增长。因此,用于糖果、乳制品、冷冻食品中,能提高膨胀率,降低冰晶析出的可能性,可使产品口感细腻,提高抗融性和保藏稳定性,改善体系形体和组织结构。

被膜剂和胶囊作用 食品胶用作被膜剂,可覆盖于食品表面,形成一层保护性薄膜,保护食品不与氧气、微生物接触,起保质、保鲜、保香或上光等作用,也可被制作可食性膜。此外,还可用作包装食品的外胶囊,主要利用两种含有不同正负电荷的离子化食品胶反应形成复杂化合物,同时形成微细胞膜包覆在芯材表面,被包覆固定的芯材物质在食品中可通过物理压力、pH值或温度变化而释放出来。 泡沫形成作用 食品胶可发泡,形成网络结构,其溶液在搅拌时可包含大量气体,并因液泡表面黏性增加使其稳定。利用蛋白受热变性,把食品胶与热糖浆混合搅拌再冷却可实现泡沫的稳定化,或是利用卡拉胶、海藻酸钠或刺槐豆胶等的凝胶反应,也可形成稳定泡沫产品。 香精固定作用 香精固定化技术是在油水乳化系统中,利用合适的乳化剂包埋香精小液滴,当水分被去除时可防止香精蒸发,防止氧化变质或从空气中吸收水分,且包埋的香精小液滴能溶解或有效分散到水媒介中,当香精从包埋膜内释放出来可得到相同香气。以明胶包埋香精,放入口香糖中,经咀嚼便可释放出香味。阿拉伯胶是所有天然食品胶或其它物质中最好的载体,蔗糖、淀粉及其衍生物也具备固定香精功能,但效果次于阿拉伯胶。

相乘作用 许多食品胶间有非常明显的相乘作用。各种单体食品胶在使用过程中存在一定缺陷,难以满足人们所需及适应日益激烈的市场竞争,通过复配,可发挥各种食品胶的互补作用,产生"1+ 1> 2"的协同增效效应,满足食品生产不同需要,扩大食品胶使用范围、提高使用功能。 保水稳定作用 食用胶的吸水比例可达数十倍,因为食用胶的分子结构中含有强离子基团,可与自由水形成氢键以及食用胶形成三维空间结构--凝胶,因此,食用胶能把自由水牢牢的"锁住",在加热、杀菌等加工过程中,水分就不会大量流失。 食品胶因具有亲水性高分子,呈现强亲水作用,可有效改善食品生产或贮存中的脱水收缩问题,也可改良结构及咀嚼口感。 其它功能 食品胶还具有一些其他的功能特性,包括粘合作用、膨松膨化作用、脂肪替代物、矫味作用等,在许多食品的加工和改良方面有着重要的作用。已有研究表明,食品胶在一定条件下,能同时吸附于多个分散介质体上使其凝聚,且能掩蔽一些不良气味。 一些新型的食用胶还具有一定的生理功能,如胡芦巴胶,具有抗糖尿病、温肾、散寒、止痛等作用。

作用机理

折叠物理作用 食品胶的分子结构中含有许多亲水基团,如羟基、羧基、氨基、羧酸根等,水化后均匀分散于溶液中,形成黏稠胶体溶液,使蛋白质分子运动减慢,降低蛋白质分子相互结合的几率和沉降速度,使其均匀稳定地悬浮于体系中。同时,还可使悬浮组织稳定化,限制金属离子活动,避免食品成分凝聚、沉淀。 折叠化学作用 食品胶大分子中含有羟基、羧基、烷氧基、糖苷键中的氧原子和肽键中的氮原子外层均含有sp3杂化轨道,轨道中未共用的孤电子对可与水分子带部分正电荷的氢离子结合形成氢键,氢键的键合力极强,当大于食品胶分子链间内聚力时,食品胶分子链舒展,食品胶分子与水结合形成长分子链,且溶解分散在水中,形成热力学稳定体系。食品胶分子舒展使多种基团充分暴露,各极性基团与极性水分子以氢键或偶极作用力相互制约形成内层水膜,内层水再与外层水作用发生缔合,体积极大的溶胶分子作为骨架,大量的水被束缚,介质的自由移动受到阻碍而产生层流间的阻力,表现出黏稠性。

常见胶质

1、吉利丁Gelatine    吉利丁又称明胶或鱼胶,从英文名 Gelatine 译音而来。它是从动物的骨头(多为牛骨或鱼骨)提炼出来的胶质,主要成分为蛋白质。    片状的吉利丁又叫吉利丁片,半透明黄褐色,有腥臭味,需要泡水去腥,经脱色去腥精制的吉利丁片颜色较透明,价格较高。吉利丁片须存放于干燥处,否则受潮会粘结。(这个我还没见过那)    粉状的吉利丁又叫吉利丁粉,也是港式食谱中的“(口者)哩粉”,功效和吉利丁片完全一样。 吉利丁粉使用时,先倒入冰水中,使粉末吸收足够的水份膨胀,不需搅拌否则会容易使粉末结块,待粉末吸足水份后,再搅拌至融化。    2、吉利T Jelly T    吉利T又称果冻粉,是一种混合类的加工胶质,属植物性,口感介在吉利丁与洋菜之间,在室温下即可凝结,使用前多先与糖混合后,再加水煮沸。    3、洋菜Agar    又叫琼脂,是由海藻中提制,又有植物性吉利丁之称,是黄白色透明的薄片或是粉末,可吸收二十倍的水,需加热后融解,当温度降至 40C 以下后会开始凝结胶体。    吉利丁需要比洋菜更低的温度才能完全凝固,而洋菜做出来的点心也不像吉利丁一碰就会有'颤动'的感觉,同时它也不会很快的在嘴里就融化掉,洋菜做的点心口感较硬脆。    什么样的点心可以考虑用洋菜来取代吉利丁呢?    有些点心中还有其它具有'低温凝结特性'的材料,如巧克力、奶油等,帮助点心的凝结,这时候洋菜可以取代食谱中吉利丁的使用。

卡拉胶与魔芋胶的复配性能 魔芋胶和κ-卡拉胶都是食品工业常用的胶凝剂,但前者必须在2%以上的浓度,pH>9即强碱性条件下才能形成凝胶。除了用量大之外,应用于碱性食品常有咸味和涩味,口感欠佳,不受欢迎;后者在有钾或钙等离子存在时,具有形成凝胶所需浓度低、透明度高等优点,但其凝胶脆性大,弹性小,易出现收缩脱液现象。这些缺陷,在很大程度上影响二者作为胶凝剂在食品工业上应用。将卡拉胶与魔芋胶进行适当复合,在中性偏酸性的条件下,可以形成对热可逆的弹性凝胶,且所形成的凝胶还具有所需胶凝剂用量少、凝胶强度高、析水率低等特点。魔芋胶可全部或部分取代槐豆胶,而获得卡拉胶与槐豆胶混合体所具有的凝胶结构。 总之,魔芋胶和κ-卡拉胶有很强的协合作用,能显著增强卡拉胶的凝胶强度和弹性,减少卡拉胶的泌水性,其作用效果比槐豆胶还强,在食品工业上具有很好的应用价值。

黄原胶与魔芋胶的复配性能 魔芋葡甘聚糖是由D-葡萄糖和D-甘露糖按2:3或1:1.6的摩尔比由β-1,4键结合起来的。而黄原胶是由黄杆菌产生的一种阴离子多糖,分子主链由D-吡喃型葡萄糖经β-1,4键连接而成,具有类似纤维的骨架结构,每两个葡萄糖中的一个C3上连接有一个三糖侧链,侧链为两个甘露糖和一个葡萄糖醛酸组成。黄原胶与魔芋胶在溶液中有明显的协同增效作用,共混合胶粘度比同浓度单一胶的粘度有数倍增加或成胶冻状,这种现象称为黄原胶与魔芋胶分子的协效增稠性和协效凝胶性。这主要是因为黄原胶分子的双螺旋结构易和含β-1,4键的多糖分子发生嵌合作用所致。 黄原胶与魔芋胶共混所生成的凝胶是一种热可逆凝胶,即加热凝胶可变成溶胶,溶胶室温放置冷却又能恢复凝胶。黄原胶无论在什么浓度下都不凝胶,当与魔芋胶混溶,在共混胶浓度为1%时形成坚实的凝胶。还有研究表明,当黄原胶与魔芋精粉的共混比例为70:30,多糖总浓度为1%,可达到协同相互作用的最大值。这种性能既增加了增粘的效果,又降低了胶的使用量。所以魔芋胶与黄原胶两者的复配胶,可以作为增稠剂和凝胶剂,广泛应用于食品和非食品工业。

食用胶的危害

可“食用”指的是没有对身体造成毒副危害的成分,同时,要了解,食用胶是一种食品添加剂,不是一种主食,或者营养成分,知识为了让食品更加粘稠美观等,对身体即使无害也说不上有益。 另外,食用胶不一定都是人工合成的,像是食品添加剂中常用的琼脂、卡拉胶都是从海藻中提取的,其中琼脂价格较高,从医学角度将是有一些有益于健康的因素,卡拉胶则会导致高血糖等的发生,也是廉价的果冻、火腿中的成分。 胶类物质最好少吃,因为它们较难被消化,而且会以胶的性质吸附在胃粘膜上,导致胃液的分泌和蠕动都收到影响,影响对其它食物的消化。

专家指出 若是动物骨胶无任何害;若是明胶或是卡拉胶等食品添加剂胶,本身无害,只是量大后人不易消化;若是非食用性原料胶,则可能产生很大的危害,直至要命。 小作坊式的企业以皮革下脚料生产的含有不少六价铬,十分有毒有害。

展开阅读全文


阅读 5440 投诉

支持原创作品,期待你的赞赏

我的赞赏码

长按识别二维码给作者赞赏

记得在赞赏留言中写下名字哦

糖水设置
原创标注
隐藏封面
图片留白
水印
权限
保护 
私密 
公开 

 访客只有输入正确答案才能阅读 
确定
热门评论
写评论

糖水作者
关注本文作者,TA的更多作品
博士龙
创作 2240 粉丝 1415
关注
查看个人主页
推荐原创
我写我读,原创是内容的灵魂
浏览更多精彩内容
关于糖水 | App | 小程序 | 电脑版

本页面内容由用户上传 | 用户协议

© 2014-2024 糖水APP

忘记密码
0
收藏
投诉
取消
操作
发送
×

作者还没有开通赞赏功能

×

你还没有开通赞赏功能

糖水赞赏实时到账、0手续费